Telegram Group & Telegram Channel
⚡️ Scikit-learn 1.7 — свежий релиз с полезными улучшениями

Что нового

Красивее и понятнее отображение пайплайнов
Теперь в HTML-представлении моделей отображаются параметры, не-дефолтные подсвечиваются, есть копирование для grid search'ей.

Custom валидация для HistGradientBoosting
Поддержка X_val, y_val прямо в .fit() + трансформация вал.набора через transform_input в пайплайне.

ROC-кривые из cross-validation
Теперь RocCurveDisplay.from_cv_results() — удобно рисовать сразу несколько ROC-кривых.

Поддержка Array API (PyTorch, CuPy и др.)
Больше функций теперь дружат с массивами по стандарту array API — можно использовать альтернативы NumPy без доп. пакетов.

MLP теперь более согласованный
MLPRegressor поддерживает loss='poisson', а также sample\_weight в обоих MLP-классах.

Переход на sparse arrays
Все модели, работавшие с sparse matrix, теперь совместимы и с sparse arrays — шаг навстречу будущему SciPy.

📥 Установить:
pip install --upgrade scikit-learn


Полный changelog — в release notes

Библиотека дата-сайентиста #свежак
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6543
Create:
Last Update:

⚡️ Scikit-learn 1.7 — свежий релиз с полезными улучшениями

Что нового

Красивее и понятнее отображение пайплайнов
Теперь в HTML-представлении моделей отображаются параметры, не-дефолтные подсвечиваются, есть копирование для grid search'ей.

Custom валидация для HistGradientBoosting
Поддержка X_val, y_val прямо в .fit() + трансформация вал.набора через transform_input в пайплайне.

ROC-кривые из cross-validation
Теперь RocCurveDisplay.from_cv_results() — удобно рисовать сразу несколько ROC-кривых.

Поддержка Array API (PyTorch, CuPy и др.)
Больше функций теперь дружат с массивами по стандарту array API — можно использовать альтернативы NumPy без доп. пакетов.

MLP теперь более согласованный
MLPRegressor поддерживает loss='poisson', а также sample\_weight в обоих MLP-классах.

Переход на sparse arrays
Все модели, работавшие с sparse matrix, теперь совместимы и с sparse arrays — шаг навстречу будущему SciPy.

📥 Установить:

pip install --upgrade scikit-learn


Полный changelog — в release notes

Библиотека дата-сайентиста #свежак

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6543

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from sg


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA